LA-UR-19-23223



## Multiplexed Quadrupole Mass Spectrometry for Monitoring of Oxygen and Contaminants in Gloveboxes and Tanks: a progress report

**Drew Geller**, Brian Price, Morgan Kelley, and John Gill Q-7, LANL

2019 Nuclear Facility & Safety Workshop April 16, 2019



### **Outline**



- Background
- Project Goals
- Prototype test system
- Time Constants in the Pumping System
- Early Data, Closures/Sensitivities with and without O<sub>2</sub>
- O<sub>2</sub> Conditioning
- Recovery-time experiments
- No-emission experiments
- Need for Standards, every cycle
- Path forward, optimization: shorter path lengths, smaller volumes, single orifice, lower source pressure, passivated chamber, different QMS, filament choices
- Summary and Conclusions



## Background



- WETF: Category 2 nuclear facility, tritium
- OMS: SS system for worker safety
- prevent flammable gas mixtures in GBs and tanks
- $< 5\%O_2$  (but alarm limit is < 3%)
- 8 Glove Boxes, 2 LPR sample loops, 2 catalytic reactors

How may we provide equivalent or better safety at a substantially lower operational cost?

National Nuclear Security Administration

## **Existing system**



(a)



(b)



- (a) Typical O2 cell housing
- (b) Glove Box O2 local alarm box
- O<sub>2</sub> sensors sit in glovebox, passive sampling
- alarm boxes inform workers of elevated levels
- other actions (purge) take ~ minutes, may require operator intervention



## **Existing system**



## Teledyne Model 3220

- with B-1 or B-3 electrochemical cells

#### Considerations:

- Mostly specific to oxygen
- Sensitive to pressure
- Accuracy
- Maintenance
- Supply chain
- Mixed waste



## Potential QMS system advantages



- Relatively insensitive to pressure
  - eliminate pressure regulation loops?
- Recalibrate without breaching gloveboxes
- Single unit to serve multiple gloveboxes
- May quantify multiple species in addition to O<sub>2</sub>
- Increased accuracy → less alarm point uncertainty
- Reduced system downtime



## QMS system



- Choose consumable parts for long life (e.g., valves > 2M cycles)
- Components should be easy to replace
- Industry standard QMS for first iteration (Pfeiffer QMG 250 PrismaPro)
  - open ion source
  - tungsten filament







- Multiplexed contaminant monitoring system
- Sampling of tanks at different pressures
- Interface for status/alarms to the instrumentation and control system (ICS)
- Minimum required measurement time
- Accuracy much higher than electrochemical method, for all sampling conditions



## Tasks and deliverables, 1/2



- Determine requirements for performance and interfaces of analyzer and system
- Analyze capillary dimensions required for servicing all gloveboxes and tanks
- Design of sample introduction scheme (orifice, batch inlet volume, etc.)
- Specify RGA/QMS with interface and software to meet analysis and I/O requirements
- Specify valve, pumps, gauges, etc. to multiplexing assembly



## Tasks and deliverables, 2/2



Construction and testing

- "Cold" experiments for performance of different sampling schemes. Software development and interface testing. in process
- Optimization of system. Tradeoff of sampling rate vs. accuracy
- Transition to field testing with facility support





## Constructed test system



- Modular
- Reconfigurable
- Solenoid valve control is accessible for testing
- Will be easy to render more compact











- Gases used:
  - N<sub>2</sub>, 2%O<sub>2</sub> (balance N<sub>2</sub>), 4%O<sub>2</sub>, 6%O<sub>2</sub>, air, He
  - O<sub>2</sub> mixtures are known to +/- 10% relative
- Capillaries:
  - 0.015" and 0.020" inner diameter
  - 20' to 100' lengths
- 10 sampling ports available on manifold



## Early tests



- Sample gas is air
- Check response time of sampling manifold
- Check consistency of O<sub>2</sub> fraction measured for different capillaries



Response time was improved by reducing volume of fittings in inlet system



#### Initial calibration



- Calibrate against air, using accepted values for N<sub>2</sub>, O<sub>2</sub>, Ar, and CO<sub>2</sub>
- Sample for 4-5 h to allow stabilization
- Test pure  $N_2$  → Sensitivity for  $N_2$  is too high, closure ~104%!





(a) sampling air at constant pressure

(b) sampling N<sub>2</sub> at constant pressure



# Nonlinearity of sensitivity



- There are some nonlinear effects on sensitivity:
  - Sensitivity is pressure-dependent,
    - depressed by space charge at higher inlet pressures,
    - possible cross-over to transition flow in sample line to QMS chamber
  - Reactive species present (O<sub>2</sub>, CO<sub>2</sub>, H<sub>2</sub>O) may affect sensitivity to other species<sup>1</sup>



E.g., C.R. Tilford, Surface and Coatings Technology, 68/69, pp. 708-712 (1994).







- Sensitivities of non-reactive samples are consistent
- O<sub>2</sub> sensitivity requires conditioning
  - but sensitivity after conditioning appears stable
- Experiment to understand O<sub>2</sub> sensitivity:
- 1. Sample 6%O<sub>2</sub> mixture for 2 hours.
- 2. Then switch to sampling pure  $N_2$  instead.
- 3. Sample the  $6\%O_2$  for 30s after intervals of n\*5 minutes.









O<sub>2</sub> signal does not completely saturate after 2 hours of conditioning.

 $O_2$  sensitivity decreases when the  $O_2$  flow is stopped.

Sensitivity decays  $\sim e^{-\sqrt{t}/\gamma}$ 



Rise of sensitivity has two different processes







For the conditioning step of this experiment, the exponential component is needed to fit the short-time behavior

Simple exponential fit alone doesn't work at all

The long-time  $e^{-\sqrt{t}/\gamma}$  behavior is probably due to reactions with surfaces in chamber.

National Nuclear Security Administration

# O<sub>2</sub> sensitivity depends on exposure even with filament off





Experiment to test O<sub>2</sub> conditioning of QMS chamber:

- Sample the 6%O<sub>2</sub> mix before and after 2 hours of O<sub>2</sub> flow
- Filament is off during the O<sub>2</sub> conditioning.



## Sensitivity relative to a standard









Sensitivity to  $O_2$  may vary in time, but the measured  $O_2$  concentration relative to a recently-measured standard will not vary.

In this experiment, the four gases are  $2\%O_2$ ,  $4\%O_2$ ,  $6\%O_2$  (all balance  $N_2$ ) and pure  $N_2$ .

Sample order is  $N_2$ , 4% $O_2$ , 6% $O_2$ , 2% $O_2$ ,  $N_2$  as shown

The mixtures are known to +/-10%.



# Ratios when sensitivity is changing rapidly

time (s)







#### **Conclusions**



- Response times of 10-20 s are achievable
- Response may still be improved by reducing volume, path lengths
- Long-time rise in O<sub>2</sub> sensitivity may be due to stainless steel surfaces (we will test this)
- Closed ion source may reduce O<sub>2</sub> sensitivity change, at expense of chamber modifications
- Even with O<sub>2</sub> sensitivity drift, real measurements are possible if a standard is regularly sampled







This NSRD project was supported by NNSA, Office of the Chief of Defense Nuclear Safety.



# **Supplementary Slides**



## Safety function



#### WETF DSA:

- "Provide an early warning so action can be taken to prevent a deflagrable gas mixture in the TGCS, and TWTS low-pressure receiver"
  - No rigid requirement on response time

Response time may be dominated by diffusion to the sensor or

capillary line







## Safety function



#### WETF TSRs (Bases):

- "DSA Section 4.4.6 and the hazards analysis (URS-SMS-TR-11-0003, Hazards Analysis for Air In-Leakage Events in WETF) evaluated both slow and fast air in-leakage events. The DSA evaluation determined that the TGCS OMS alarm could only be credited in a slow leak scenario to alert personnel with sufficient response time to initiate ACTIONS to prevent the potential formation of a deflagrable mixture in the TGCS SECTION. In addition, detecting and correcting abnormal oxygen concentrations in the TGCS also prevents oxygen in-leakage to the TGHS and the LPR."
  - No rigid requirement on response time
  - No requirement on continuous measurement







- capillaries of varied lengths and flow rates
- standard mixtures, 2-6% O<sub>2</sub> in N<sub>2</sub>
- determine accuracy vs. speed of measurement
- measure delay times for capillaries
- test linearity with pressure and concentration
- track calibration drift, determine required recalibration period

